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The interference pattern of the resonance fluorescence from a J = 1/2 to J = 1/2 transition
of two identical atoms confined in a three-dimensional harmonic potential is calculated. Thermal
motion of the atoms is included. Agreement is obtained with experiments [Eichmann et al., Phys.
Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the
present calculations, a fringe visibility greater than 50% can be observed with polarization-selective
detection. The dependence of the fringe visibility on polarization has a simple interpretation, based
on whether or not it is possible in principle to determine which atom emitted the photon.

PACS numbers: 03.65.Bz, 32.80.Pj, 42.50.-p

I. INTRODUCTION

Many variants of two-slit interference experiments, often
“thought experiments,” have been used to illustrate funda-
mental principles of quantum mechanics. Recently, Eichmann
et al. [1] have observed interference fringes in the resonance
fluorescence of two trapped ions, analogous to those seen in
Young’s two-slit experiment. Of particular interest was the
fact that the interference fringes appeared when it was im-
possible in principle to determine which ion which scattered
the photon disappeared when it was possible. This is in
agreement with Bohr’s principle of complementarity, which
requires that the wave nature of the photon (the interference
fringes) cannot be observed under the same conditions as its
particle nature (the possibility of assigning to the photon a
trajectory that intersects just one of the ions). In contrast
to many thought experiments [2], the disappearance of the
fringes when the path of the particle can be determined has
nothing to do with the position-momentum indeterminacy re-
lations. The experiment contains features from some thought
experiments of Scully and Drühl [3], regarding the interfer-
ence of light scattered by two multi-level atoms.

Recently, controversy has arisen over the mechanism by
which complementarity is enforced in a two-slit interference
experiment. Some claim that the destruction of interference
by a determination of the particle’s path is always due to a
random momentum transfer necessitated by the indetermi-
nacy relations [4–6]. Others claim that the mere existence
of the path information can be sufficient to destroy the in-
terference [7]. Englert et al. claim that the experiment of
Eichmann et al. supports the second position [8].

Published calculations explain some aspects of the obser-
vations of Eichmann et al. [9–13]. However, none of those
calculations include all of the factors required to make a com-
parison with the experimental data. Here, we calculate the
scattering cross section for arbitrary directions and polariza-
tions of the incident and outgoing light. While the results

were used in the analysis of the data in Ref. [1], the details
of the calculations were not given. The main limitation of
the calculation is the use of perturbation theory, so that it is
valid only for low light intensities. However, it includes the
effect of thermal motion more precisely than has been done
elsewhere, taking into account the actual normal modes of
the system. Also, the actual experimental geometry is fully
taken into account, which is not always the case in the other
calculations.

Finally, we clarify the sense in which the loss of the fringe
visibility [defined as (Imax − Imin)/(Imax + Imin)] for certain
detected polarizations is due to the existence of “which path”
information in the ions. This is an application of the funda-
mental quantum principle that transition amplitudes are to
be added before squaring if and only if they connect the same
initial and final states.

II. EXPERIMENT

The experimental apparatus has been described previously
[1,14]. Figure 1 shows the geometry. Two 198Hg+ ions were
confined in a linear Paul (rf) trap by a combination of static
and rf electric fields. The ions were laser-cooled to tem-
peratures of a few mK with a beam of linearly polarized,
continuous-wave light, nearly resonant with the 194 nm tran-
sition from the ground 6s 2S1/2 level to the 6p 2P1/2 level. The
laser beam diameter was about 50 µm, and the power was 50
µW or less. The same beam was the coherent source for the
Young’s interference. Cooling in the trap resulted in strong
localization of the ions, which was essential for observation
of interference fringes. The trap potentials were arranged so
that a pair of ions would be oriented along the symmetry
(Z) axis of the trap. The incoming photons, with wavevec-
tor kin and polarization vector ε̂in, made an angle Θ of 62◦

with respect to the Z axis. The X axis is oriented so that
the X-Z plane contains kin. Light emitted by the ions was
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collimated by a lens and directed to the surface of an imaging
photodetector, which was used to observe the fringes. The
wavevector and polarization of an outgoing photon are kout

and ε̂out. The projection of kout onto the X-Z plane makes
an angle φ with respect to kin. The deviation of kout from
the X-Z plane in the +Y direction is Φ (not shown in Fig. 1).
The sensitive area of the photodetector included a range of
φ from about 15◦ to 45◦ and a range of Φ from about -15◦

to +15◦. For polarization-selective detection, a glass plate
oriented at Brewster’s angle was placed in the detection path
so that nearly all of the light with ε̂out in the X-Z plane was
transmitted into the glass, while some of the light polarized
along the Y axis was reflected to the imaging detector. The
input polarization ε̂in was varied. Another lens system formed
a real image of the ions on a second imaging detector. This
image was used to determine when there were precisely two
ions in the trap.

III. TWO-ION HARMONIC OSCILLATOR
SYSTEM

In the pseudo-potential approximation, the Hamiltonian for
the translational motion of the two ions in the harmonic trap
is

Htrans =
P2

1

2m
+

P2
2

2m
+ V (R1) + V (R2) +

e2

4πε0 | R1 −R2 |
,

(1)

where Ri and Pi are the position and momentum of the ith
ion, e and m are the charge and mass of an ion, and

V (R) ≡ 1

2
mω2

R

(
X2 + Y 2

)
+

1

2
mω2

ZZ
2 (2)

is the potential energy of a single ion in the trap. In Eq. (2),
we have made the approximation that the trap pseudopo-
tential is cylindrically symmetric. Here, R=(X,Y,Z), in the
Cartesian coordinate system shown in Fig. 1. The classical
equilibrium positions of the ions, found by minimizing the to-
tal potential energy, are R0

1 = (d/2)Ẑ and R0
2 = −(d/2)Ẑ,

where d = [e2/(2πε0mω
2
Z)]1/3, and it is assumed that ωR >

ωZ .

For small displacements u1 = R1 −R0
1 and u2 = R2 −R0

2

about the equilibrium positions, a harmonic approximation
can be made. The Hamiltonian separates into terms involv-
ing either center-of-mass (com) or relative (rel) coordinates
and momenta defined by

ucom ≡ (u1 + u2)/2

urel ≡ (u1 − u2)/2

Pcom ≡ P1 + P2 (3)

Prel ≡ P1 −P2

The translational Hamiltonian, in the harmonic approxima-
tion, is

Htrans = h̄ωZ(Ncom
Z + 1/2) + h̄ωR(Ncom

X +Ncom
Y + 1)

+ h̄ωS(N rel
Z + 1/2) + h̄ωT (N rel

X +N rel
Y + 1). (4)

The number operators are defined in the usual way byNcom
i ≡

(acom
i )†acom

i and N rel
i ≡ (arel

i )†arel
i for i = X,Y,Z. The anni-

hilation operators are defined in the usual way, for example:

acom
Z ≡

√
mωZ

h̄
ucom
Z +

i√
4h̄mωZ

P com
Z . (5)

The three center-of-mass modes have the same frequencies as
those of a single ion in the trap: ωZ and ωR. The three relative
modes include a symmetric stretch mode along the Z direction
at frequency ωS =

√
3ωZ and two tilting or rocking modes

along the X and Y directions at frequency ωT = (ω2
R−ω2

Z)1/2

The eigenstates of Htrans are the simultaneous eigenstates of
the set of number operators | ncom

X , ncom
Y , ncom

Z , nrel
X , nrel

Y , n
rel
Z 〉

with eigenvalues h̄[ωZ(ncom
Z + 1/2) + ωR(ncom

X + ncom
Y + 1) +

ωS(nrel
Z + 1/2) + ωT (nrel

X + nrel
Y + 1)].

IV. ATOMIC LEVEL STRUCTURE

Figure 2 shows the magnetic sublevels involved in the
6s 2S1/2 to 6p 2P1/2 transition. These levels form an ap-
proximately closed system, since the probability that the
6p 2P1/2 level radiatively decays to the 5d96s2 2D3/2 level is
only 1.4 × 10−7 [15]. The rest of the time it returns to the
ground 6s 2S1/2 level. The 5d96s2 2D3/2 level has a lifetime of
9 ms and decays with about equal probability to the ground
level or to the 5d96s2 2D5/2, which has a lifetime of 86 ms and
decays only to the ground level.

Since the static magnetic field is small, we are free to define
the quantization axis of the ions to be along the electric polar-
ization vector ε̂in of the incident light. If the static magnetic
field is along some other direction, then the Zeeman sublevels
defined according to the electric polarization vector are not
stationary states. This does not change the analysis as long
as the Zeeman precession frequency is much less than the in-
verse of the scattering time, which is approximately equal to
the 6p 2P1/2-state lifetime (2.3 ns). In the experiments de-
scribed here, the magnetic field was small enough that this
was always the case.

Figure 3 shows a Cartesian coordinate system having its
z axis oriented along ε̂in. The x axis is parallel to kin. The
y axis is defined so that (x, y, z) forms a right-handed coor-
dinate system. This coordinate system is more useful than
the trap-oriented (X,Y,Z) coordinate system of Fig. 1 for
describing the angular distribution of the scattered light.

V. SCATTERING CROSS SECTION

Consider the process in which two ions, initially in their
ground electronic states, absorb a photon having wavevector
kin and polarization ε̂in, emit a photon having wavevector
kout and polarization ε̂out, and are left in their ground elec-
tronic states. The ions may change their Zeeman sublevels
during the process. Also, the motional state of the two ions
may change.

The electric dipole Hamiltonian which causes the transi-
tions is

HED = −D1 ·E(R1, t)−D2 ·E(R2, t), (6)
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where D1 and D2 are the electric dipole moment operators
for ions 1 and 2 and E(R, t) is the electric field, consisting of
a classical part, representing the incident laser beam, and the
quantized free field operator:

E(R, t) = ε̂in<E0eikin·R−iωint

+
∑
s

i

√
h̄ωs

2ε0V

[
asε̂se

iks·R − a†sε̂se−iks·R
]
, (7)

where < denotes the real part, E0 is the amplitude of the laser
electric field, and as is the annihilation operator for a photon
of wavevector ks, frequency ωs, and polarization εs, and V is
the quantization volume.

The electric dipole Hamiltonian, in second-order perturba-
tion theory, gives the cross section for the two ions to scatter
a photon in a particular direction:

dσi

dΩout
=
∑
f

C1

∣∣∣∣∣∑
j

〈Ψf |(D1 · ε̂out)e
−ikout·R1 |Ψj〉〈Ψj|(D1 · ε̂in)eikin·R1 |Ψi〉

ω0 − ωin + (Ej −Ei)/h̄− iγ/2

+
∑
j

〈Ψf |(D2 · ε̂out)e
−ikout·R2 |Ψj〉〈Ψj|(D2 · ε̂in)eikin·R2 |Ψi〉

ω0 − ωin + (Ej − Ei)/h̄− iγ/2

∣∣∣∣∣
2

, (8)

where ωin = c|kin|, ωout = c|kout|, h̄ω0 is the separa-
tion between the ground and excited electronic states of an
ion, γ is the decay rate of the excited state, and C1 ≡
ω3

out/(16π2c4h̄2ε20). The initial, final, and intermediate states
describing the electronic and motional degrees of freedom of
the system are |Ψi〉, |Ψf 〉, and |Ψj〉. The energies Ei, Ef , and
Ej are the motional energies of the ions in the initial, final,
and intermediate states. They depend on the values of the
six harmonic oscillator quantum numbers, which we denote
by {nho}. Because of energy conservation, the frequency of
the outgoing photon depends on the final state:

ωout = ωin + (Ei − Ef)/h̄. (9)

Thus, the scattered light has a discrete frequency spectrum,
and the different components could, in principle, be detected
separately. In Eq. (8), all frequency components are summed,
which is appropriate if the detection is frequency-insensitive.
The laser frequency is assumed to be nearly resonant with an
optical transition in the ion, so that only one intermediate
electronic state has to be included in the sums, and we can
neglect the counter-rotating terms. We ignore dipole-dipole
interactions between the ions, because they were separated
by many wavelengths in the experiment. Here we specialize
to the case of an ion which has no nuclear spin and which
has a 2S1/2 ground state and a 2P1/2 excited state, like the
198Hg+ ions used in Ref. [1]. We denote a state in which ion
1 is in the (2S1/2, mJ = +1/2) state, ion 2 is in the (2P1/2,
mJ = −1/2) state, and has the harmonic oscillator quantum
numbers {nho} by

|Ψ〉 = |(2S1/2,+1/2)1(2P1/2,−1/2)2{nho}〉. (10)

There are four possible sets of initial mJ quantum numbers
for the two ions and four possible final sets. There are two ba-
sic kinds of scattering processes — those which preserve the
mJ quantum numbers of the ions, and those which change
mJ of one ion. We treat these cases separately. The form of
Eq. (8) excludes the possibility of both ions changing their
mJ quantum numbers.

A. Both mJ quantum numbers remain the same (π
case)

In order to be definite, we let mJ = +1/2 for both ions,
both before and after the scattering. That is,

|Ψi〉 = |(2S1/2,+1/2)1(2S1/2,+1/2)2{nho}i〉, (11)

|Ψf〉 = |(2S1/2,+1/2)1(2S1/2,+1/2)2{nho}f 〉. (12)

We call this the π case, because it involves only π transitions,
that is, transitions that leave mJ unchanged. Because of the
electric dipole selection rules, the only intermediate states
which contribute nonzero terms are of the form

|Ψj〉 = |(2P1/2,+1/2)1(2S1/2,+1/2)2{nho}j〉 (13)

for the first sum, and

|Ψj〉 = |(2S1/2,+1/2)1(2P1/2,+1/2)2{nho}j〉 (14)

for the second sum. The matrix elements connecting the ini-
tial states to the intermediate states are

〈Ψj|(Dp · ε̂in)eikin·Rp |Ψi〉
= 〈(2P1/2,+1/2)p|Dpz |(2S1/2,+1/2)p〉
×〈{nho}j|eikin·Rp |{nho}i〉

=
1√
6

(2P1/2‖D(1)‖2S1/2)〈{nho}j |eikin·Rp |{nho}i〉, (15)

where p = 1 or 2, Dpz is the z component of the Dp operator,
and (2P1/2‖D(1)‖2S1/2) is the reduced matrix element of the
dipole moment operator (the same for both ions).

The angular distribution of the outgoing photon is con-
tained in the matrix elements connecting the intermediate
states to the final states. The unit propagation vector for the
outgoing photon is

k̂out = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), (16)

where ϑ and ϕ are spherical polar angles with respect to the
(x, y, z) coordinate system of Fig. 3. The polarization vector
ε̂out must be perpendicular to k̂out. We define two mutually
orthogonal unit polarization vectors, both perpendicular to
k̂out, by
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ε̂π = (− cosϑ cosϕ,− cosϑ sinϕ, sinϑ) (17)

and

ε̂σ = (− sinϕ, cosϕ, 0). (18)

Since only the z components of D1 and D2 contribute to the
matrix elements connecting the intermediate and final states
for this case, light with polarization vector ε̂σ cannot be emit-
ted.

With the choice of ε̂out=ε̂π, the matrix elements connecting
the intermediate states to the final states are

〈Ψf |(Dp · ε̂π)e−ikout·Rp |Ψj〉
= sinϑ〈(2S1/2,+1/2)p|Dpz|(2P1/2,+1/2)p〉
×〈{nho}f |e−ikout·Rp |{nho}j〉

=
sinϑ√

6
(2S1/2‖D(1)‖2P1/2)〈{nho}f |e−ikout·Rp |{nho}j〉. (19)

Equation (8) for the cross section becomes

dσ(1)

dΩout
=

sin2 ϑ

36
|(2S1/2‖D(1)‖2P1/2)|4

∑
f

C1

∣∣∣∣∣∑
j

〈{nho}f |e−ikout·R1 |{nho}j〉〈{nho}j |eikin·R1 |{nho}i〉
ω0 − ωin + (Ej −Ei)/h̄− iγ/2

+
∑
j

〈{nho}f |e−ikout·R2 |{nho}j〉〈{nho}j |eikin·R2 |{nho}i〉
ω0 − ωin + (Ej − Ei)/h̄− iγ/2

∣∣∣∣∣
2

. (20)

The (1) superscript on the cross section is to label it as the
π case. The same result would have been obtained for any of
the other three possible sets of initial mJ quantum numbers,
so this is the general result for the case in which the mJ values
do not change. The presence of two terms in Eq. (20), which
are added and then squared, is the source of the Young’s in-
terference fringes. These two terms can be identified with the
two possible paths for the photon, each intersecting one of the
two ions.

The sums over intermediate harmonic oscillator states can
be done by closure if the energy denominators are constant.
While they are not constant, because (Ej −Ei) varies, it can

be shown (see, for example, Ref. [16]) that the main contri-
butions to the sum come from terms where |Ej − Ei| is less
than or on the order of

√
REi, where R is the photon re-

coil energy (h̄kout)
2/(2m). For the Hg+ 194.2 nm transition,

R=h×26.7 kHz. For Doppler cooling, Ei will be on the order
of h̄γ, where, for this transition, h̄γ=h× 70 MHz. Thus, the
rms value of (Ej − Ei) will be on the order of h × 1.4 MHz,
which is much less than h̄γ/2. Therefore, while the denomi-
nators are not strictly constant, they are nearly constant for
the terms which contribute significantly to the sums.

If we neglect (Ej −Ei)/h̄ compared to γ/2 and use closure
to evaluate the sums, Eq. (20) simplifies to

dσ(1)

dΩout
=

sin2 ϑ

36

|(2S1/2‖D(1)‖2P1/2)|4

(ω0 − ωin)2 + γ2/4

∑
f

C1

∣∣〈{nho}f |e−ikout·R1eikin·R1 |{nho}i〉+ 〈{nho}f |e−ikout·R2eikin·R2 |{nho}i〉
∣∣2

=
sin2 ϑ

36

|(2S1/2‖D(1)‖2P1/2)|4

(ω0 − ωin)2 + γ2/4

∑
f

C1

∣∣〈{nho}f |e−iq·R1 |{nho}i〉+ 〈{nho}f |e−iq·R2 |{nho}i〉
∣∣2

=
sin2 ϑ

36

|(2S1/2‖D(1)‖2P1/2)|4

(ω0 − ωin)2 + γ2/4

∑
f

C1

∣∣〈{nho}f |e−iq·R1 + e−iq·R2 |{nho}i〉
∣∣2 , (21)

where q ≡ kout − kin. Since the branching ratio for decay of
the excited 2P1/2 states to the ground 2S1/2 states is nearly
100%, the spontaneous decay rate γ is

γ =
ω3

0

6πε0h̄c3

∣∣(2S1/2‖D(1)‖2P1/2)
∣∣2 . (22)

Equation (21) for the cross section becomes

dσ(1)

dΩout
=

sin2 ϑ

8π
σ0L(ωin − ω0)

×
∑
f

∣∣〈{nho}f |e−iq·R1 + e−iq·R2 |{nho}i〉
∣∣2 , (23)

where σ0 = λ2
0/2π is the resonance cross section, λ0 = 2πc/ω0

is the resonance wavelength, and L(ωin − ω0) is a Lorentzian
of unit height and width γ:

L(ωin − ω0) ≡ (γ/2)2

(ωin − ω0)2 + (γ/2)2
. (24)

In deriving Eq. (23), we have assumed that ω0/ωout ≈ 1. The
sum over final harmonic oscillator states can be done by clo-
sure:

dσ(1)

dΩout
=

sin2 ϑ

8π
σ0L(ωin − ω0)〈{nho}i|(eiq·R1 + eiq·R2)(e−iq·R1 + e−iq·R2)|{nho}i〉

=
sin2 ϑ

8π
σ0L(ωin − ω0)〈{nho}i|2 + eiq·(R1−R2) + e−iq·(R1−R2)|{nho}i〉. (25)
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The exponentials can be combined in Eq. (25) because the components of R1 and R2 commute. The cross section can be
written in terms of the equilibrium ion separation d and the displacement coordinates u1 and u2 as

dσ(1)

dΩout
=

sin2 ϑ

8π
σ0L(ωin − ω0)〈{nho}i|2 + eiq·(d+u1−u2) + e−iq·(d+u1−u2)|{nho}i〉. (26)

The exponential factors in Eq. (26) depend on the relative coordinates of the two ions and not on their center-of-mass coordi-
nates.

In order to compare with the experiment, we compute the cross section averaged over a thermal distribution of |{nho}i〉
initial states: 〈

dσ(1)

dΩout

〉
=

sin2 ϑ

8π
σ0L(ωin − ω0)

[
2 + eiq·d

〈
eiq·(u1−u2)

〉
+ e−iq·d

〈
e−iq·(u1−u2)

〉]
(27)

where 〈A〉 denotes the thermal average of the operator A. For harmonic oscillators, the thermal averages have a simple form
[17,18]:

〈e±iq·(u1−u2)〉 = e−
1
2
〈[q·(u1−u2)]2〉. (28)

While Refs. [17,18] assume a common temperature for all of the harmonic oscillator modes, Eq. (28) is still valid if different
modes have different temperatures. Different modes are laser-cooled at different rates depending on the direction of the laser
beam. Hence, the modes have different temperatures unless the energy transfer rate between them is fast [19]. The thermally
averaged cross section is 〈

dσ(1)

dΩout

〉
=

sin2 ϑ

4π
σ0L(ωin − ω0)

[
1 + cos(q · d)e−

1
2
〈[q·(u1−u2)]2〉

]
, (29)

which is equivalent to Eq. (1) of Ref. [1], except that it includes the sin2 ϑ angular dependence. The interference fringe visibility
is given by the exponential factor multiplying cos(q · d) This factor decreases with increasing temperature and is analogous to
the Debye-Waller factor for x ray scattering from a crystal. It can be rewritten as

e−
1
2
〈[q·(u1−u2)]2〉 = exp

[
− h̄q2

X

mωT

(
〈N rel

X 〉+
1

2

)
− h̄q2

Y

mωT

(
〈N rel

Y 〉+
1

2

)
− h̄q2

Z

mωS

(
〈N rel

Z 〉+
1

2

)]
= exp

[
− h̄q2

X

2mωT
coth

(
h̄ωT

2kBT rel
X

)
− h̄q2

Y

2mωT
coth

(
h̄ωT

2kBT rel
Y

)
− h̄q2

Z

2mωS
coth

(
h̄ωS

2kBT rel
Z

)]
≈ exp

(
−q

2
XkBT

rel
X

mω2
T

− q2
Y kBT

rel
Y

mω2
T

− q2
ZkBT

rel
Z

mω2
S

)
, (30)

where T rel
Z is the temperature of the urel

Z mode, etc., and the
approximation in the last line is valid when the mean har-
monic oscillator quantum numbers are large. In the limit of
small thermal motion or small |q| (near-forward scattering),
the visibility can approach 100% (with polarized detection),
in agreement with Ref. [13], but in contradiction to Ref. [11],
where it was claimed that the visibility could not exceed 50%.

B. One mJ quantum number changes (σ case)

Here we consider the case in which one of the ions changes
its mJ quantum number in the scattering process. We call
this the σ case, since it involves a σ transition, that is, a tran-
sition that changes mJ by ±1 in one of the ions. There are
eight cases, since there are four possible initial states and two
ions which could change quantum numbers.

In order to be definite, we pick the case where mJ = +1/2
for both ions before the scattering, and ion 1 changes to
mJ = −1/2 after the scattering. That is,

|Ψi〉 = |(2S1/2,+1/2)1(2S1/2,+1/2)2{nho}i〉, (31)

|Ψf〉 = |(2S1/2,−1/2)1(2S1/2,+1/2)2{nho}f 〉. (32)

Only the first sum over j in Eq. (8) contributes, since only it
contains D1, the dipole moment which leads to the change in
mJ of ion 1.

As in the previous case, the only intermediate states which
contribute nonzero terms are of the form

|Ψj〉 = |(2P1/2,+1/2)1(2S1/2,+1/2)2{nho}j〉. (33)

The matrix elements connecting the initial states to the in-
termediate states are

〈Ψj|(D1 · ε̂in)eikin·R1 |Ψi〉
= 〈(2P1/2,+1/2)1|D1z |(2S1/2,+1/2)1〉
×〈{nho}j |eikin·R1 |{nho}i〉

=
1√
6

(2P1/2‖D(1)‖2S1/2)〈{nho}j |eikin·R1 |{nho}i〉. (34)

In the ϑ = π/2 plane, only the polarization corresponding
to ε̂σ is emitted, but in general, light with both ε̂σ and ε̂π
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contributes to the scattered intensity. We consider these two
cases separately.

For ε̂out=ε̂σ, the matrix elements connecting the interme-
diate states to the final states are

〈Ψf |(D1 · ε̂σ)e−ikout·R1 |Ψj〉

=
−ieiϕ√

2
〈(2S1/2,−1/2)1|D(1)

1−1|(
2P1/2,+1/2)1〉

×〈{nho}f |e−ikout·R1 |{nho}j〉 (35)

=
−ieiϕ√

6
(2S1/2‖D(1)‖2P1/2)〈{nho}f |e−ikout·R1 |{nho}j〉,

where D
(1)
p−1 is the (1,-1) spherical tensor component of the

dipole moment operator for ion p. The rest of the calculation
is very similar to the π case. The final result, analogous to
Eq. (29) for the π case, is〈

dσ(2)

dΩout

〉
=

1

8π
σ0L(ωin − ω0), (36)

which is independent of k̂out and shows no interference fringes.
The same result would have been obtained for any of the other
three initial states, since the absolute squares of the matrix
elements are the same.

For ε̂out=ε̂π, the matrix elements connecting the interme-
diate states to the final states are

〈Ψf |(D1 · ε̂π)e−ikout·R1 |Ψj〉

=
− cosϑeiϕ√

2
〈(2S1/2,−1/2)1|D(1)

1−1|(
2P1/2,+1/2)1〉

×〈{nho}f |e−ikout·R1 |{nho}j〉 (37)

=
− cosϑeiϕ√

6
(2S1/2‖D(1)‖2P1/2)〈{nho}f |e−ikout·R1 |{nho}j〉.

The final result is〈
dσ(3)

dΩout

〉
=

cos2 ϑ

8π
σ0L(ωin − ω0), (38)

which shows no interference fringes. The same result would
have been obtained for any of the other initial states.

For the σ case, Young’s interference fringes are not ob-
served because only one of the two terms inside the absolute
value bars in Eq. (8) is nonzero. There is only one path for
the photon, intersecting the ion whose state is changed in the
scattering process.

C. Total cross section with or without
polarization-selective detection

In Ref. [1], a linear polarizer was sometimes placed before
the photon detector. For experimental convenience, the orien-
tation of this polarizer was fixed, while the input polarization
could be varied. To obtain the total cross section describing
a given experimental situation, we sum over all final atomic
states and average over all initial states. For polarization-
insensitive detection, we also sum over the polarizations of
the outgoing photon.

The cross section for polarization-insensitive detection is

〈
dσunpol

dΩout

〉
=

〈
dσ(1)

dΩout

〉
+ 2

〈
dσ(2)

dΩout

〉
+ 2

〈
dσ(3)

dΩout

〉
=
σ0

4π
L(ωin − ω0)

{
1 + cos2 ϑ

+ sin2 ϑ
[
1 + cos(q · d)e−

1
2
〈[q·(u1−u2)]2〉

]}
. (39)

The fringe visibility in this case cannot exceed 50%.
The cross section for detection of light with polarization ε̂π

is〈
dσ(π)

dΩout

〉
=

〈
dσ(1)

dΩout

〉
+ 2

〈
dσ(3)

dΩout

〉
=
σ0

4π
L(ωin − ω0)

{
cos2 ϑ

+ sin2 ϑ
[
1 + cos(q · d)e−

1
2
〈[q·(u1−u2)]2〉

]}
. (40)

The fringe visibility in this case can approach 100% in the
ϑ = π/2 plane if the Debye-Waller factor is close to 1.

The cross section for detection of light with polarization ε̂σ
is 〈

dσ(σ)

dΩout

〉
= 2

〈
dσ(2)

dΩout

〉
=
σ0

4π
L(ωin − ω0), (41)

which is totally isotropic and shows no fringes.

D. Which-path interpretation

The presence of interference fringes in the π case and their
absence in the σ case has a simple explanation in terms of the
possibility, in principle, of determining which of the two ions
scattered the photon. Consider the sequence of transitions in
Fig. 4(a), representing the π case. Each box represents the
combined state of the two ions. Ion 1 is represented by the
diagram on the left side of a box and ion 2 by that on the
right. The ordering of energy levels is the same as in Fig. 2.
For simplicity, we neglect the translational degrees of freedom,
which lead to the appearance of the Debye-Waller factor in
Eq. (29). The system begins in the state

|Ψi〉 = |(2S1/2,+1/2)1(2S1/2,−1/2)2〉. (42)

One ion or the other absorbs a photon from the laser beam and
undergoes a π transition to the excited state. That ion emits
a photon and undergoes a π transition back to the ground
state. The two paths, corresponding to either ion 1 or ion 2
scattering the photon, lead to the same final state. Therefore,
the amplitudes for these two paths must be added, and this
leads to interference. Since the final states of the ion are the
same as the initial states, it is not possible to determine which
of the ions scattered the photon by examining their states.

Now consider the sequence of transitions in Fig. 4(b), rep-
resenting the σ case. As in the previous case, one ion or the
other absorbs a photon and undergoes a π transition to the
excited state. However, in this case, that ion undergoes a σ

transition when it emits a photon and changes its mJ quan-
tum number. The final states differ, depending on which of
the ions scattered the photon. Hence, there is no interference
between the two paths. It would be possible to tell which

6



ion scattered the photon by examining the states of the ions
before and after the scattering.

The preceding analysis is valid only in the limit of low laser
intensity, so that the probability of both ions being excited
at the same time is negligible, and stimulated emission can
be neglected. It is not necessary that the two ions be in the
same quantum state for interference to occur, only that the
final combined states for the two paths be indistinguishable.
For definiteness, a particular initial state [Eq. (42)] was cho-
sen. For each of the 3 other possible initial states, there is
a process like Fig. 4(a) in which the ions scatter a photon
and return to their original states and one like Fig. 4(b) in
which one of them scatters a photon and changes its state.
Processes of the former type lead to interference; those of the
latter type do not.

VI. COMPARISON WITH EXPERIMENT

Figure 5 shows an image of the fringes observed for the π
case, in which ε̂in was perpendicular to the X-Z plane and
the detector was sensitive only to light polarized parallel to
ε̂in. The dark spots are due to stray reflections of the laser
beams. When ε̂in was rotated by 90◦ without changing the
polarizer in front of the detector (σ case), the image showed
no fringes. The image data from a single ion, which shows no
interference fringes, were used to correct the data of Fig. 5
for a slowly spatially varying detection efficiency. The data
within the rectangle in Fig. 5 were summed along the vertical
direction and divided by the detection-efficiency function.

The normalized data points are shown in Fig. 6 together
with a least-squares fit. In this fit, as in Ref. [1], the temper-
atures of the stretch and tilt modes were assumed to have the
ratio expected from theory [19],

T rel
Z /T rel

X = {1 + [3 cos2(Θ)]−1}/{1 + [3 sin2(Θ)]−1}, (43)

and both temperatures were allowed to vary together in the
fit. The fringe visibility in the vicinity of the X-Z plane
is insensitive to the temperature of the Y motion, which is
cooled indirectly by coupling to the other modes. The mean
ion separation was calculated from knowledge of the trap pa-
rameters. The dependence of Eq. (29) on the out-of-plane
angle Φ is small, and Φ was set to 0 in the fit. The fitted
value of T rel

X was 1.08 ± 0.12 mK, or 0.92 ± 0.10 times the
Doppler-cooling limit. The fringe visibility, extrapolated to
φ = 0, would be 100% if it followed Eq. (29). The fitted value
for this parameter was (71 ± 4)%. The errors represent the
standard deviations estimated from the fit. The maximum
observed visibility, at the minimum value of φ in Fig. 6 is
approximately 60%.

There are several likely causes of the difference between the
observed and predicted values of the fringe visibility. First,
the theory was derived for the limit of low intensity. The
saturation parameter was measured to be s = 0.078 ± 0.025
(see Appendix). By itself, this would reduce the maximum
visibility to (1 + s)−1 ≈ 93%, because the spectrum of the
resonance fluorescence in this polarization contains an inco-
herent part [20]. Other likely causes of reduced visibility are
unequal laser intensities at the two ions, imperfect polarizers,
stray background light, and quantum jumps of one of the ions

to a metastable state, leaving only one ion fluorescing. Each
of these effects might reduce the visibility by a few percent.

VII. DISCUSSION

The fact that the resonance fluorescence from a two-level
atom illuminated by weak, monochromatic light is coherent
with the applied field was noted by Heitler [21]. The spectrum
of the resonance fluorescence for arbitrary applied intensities
was calculated by Mollow [22]. In the limit of low applied in-
tensity, the spectrum is monochromatic and coherent with the
applied field (a δ function). At higher intensities, the coherent
component decreases in amplitude, and a component not co-
herent with the applied field and having a width equal to the
natural linewidth appears. At very high intensities, the co-
herent component continues to decrease in amplitude, and the
incoherent component splits into three separate Lorentzians.
The existence of a coherent component in the resonance flu-
orescence of a single ion was confirmed directly by Höffges et
al. by a heterodyne measurement [23].

Classically, we would expect the resonance fluorescence
from two two-level atoms at fixed positions, excited by the
same monochromatic field, to generate interference fringes
having 100% visibility in the limit of low applied intensity,
since the radiated fields are coherent with each other. At
higher applied intensities, the visibility should decrease, since
more of the resonance fluorescence intensity belongs to the in-
coherent component. Quantum treatments for two two-level
atoms have been given by Richter [24] and by Kochan et al.
[25], who predict a visibility equal to (1 + s)−1, where s is
the saturation parameter defined in Ref. [26]. This is just the
ratio of the intensity of the coherent component to the total
resonance fluorescence intensity for a single atom.

Polder and Schuurmans [20] calculated the spectrum of the
resonance fluorescence of a J = 1/2 to J = 1/2 transition for
a single atom. The spectrum of the light having polarization
ε̂π is like that for a two-level atom. Hence, interference fringes
would be expected in the ε̂π-polarized resonance fluorescence
from two such atoms for low applied intensity. The spectrum
of the light having polarization ε̂σ does not contain a δ func-
tion. In the limit of low applied intensity, it is a Lorentzian
having a width approximately equal to the photon scattering
rate, which can be much less than the natural linewidth. Even
for applied intensities approaching s = 1, the coherence length
is on the order of c/γ, where γ is the spontaneous decay rate
of the excited state. For the Hg+ 6p 2P1/2 level, this is about
70 cm. For interference fringes to exist, the radiation from the
two atoms must be mutually coherent. Whether or not fringes
should exist in the ε̂σ-polarized light from two atoms is not
immediately obvious from a classical analysis. However, the
perturbative quantum treatment of Sec. V predicts that there
should be no interference, since there is only one probability
amplitude connecting the initial and final states. The absence
of interference in this case is fundamentally a quantum effect,
though one having more to do with the quantum nature of
the atom and the existence of degenerate, orthogonal ground
states, than with the quantum nature of the electromagnetic
field. Precisely the same point was made by Scully and Drühl
when they showed that interference fringes are not present in
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the Raman radiation emitted by two three-level atoms having
a Λ configuration [3].

Wong et al. [13] calculated the interference of resonance
fluorescence from two four-level atoms having a level struc-
ture like that of 198Hg+. Their analytic calculations are for a
simpler geometry than the one actually used by Eichmann et
al. [1] and ignore the motion of the ions. They do, however,
include the effect of the decrease in visibility due to the inco-
herent component of the resonance fluorescence, which is not
included in the perturbative calculation of Sec. V. The ana-
lytic calculations of Wong et al. and the present calculations
agree in the limits in which they are both valid, that is, for low
applied intensities and for no ion motion. In particular, Wong
et al. show that the fringe visibility can approach 100% at
low applied intensities, with polarization-selective detection.
Wong et al. also made Monte Carlo wavefunction simulations,
in which the motion of the ions was included classically, and
observed a decrease in visibility due to this effect.

Huang et al. [12] calculated the effect of thermal motion
on the interference fringe visibility for two two-level atoms,
each trapped in a separate harmonic well. They obtained an
expression equivalent to Eq. (1) of Eichmann et al. [1] for this
model. However, the treatment of Eichmann et al., the de-
tails of which are given in the present article, is more useful
for the analysis of the experiment of Ref. [1], since it deals
explicitly with the actual normal mode structure of the two
trapped ions.

Brewer has published a theory of interference in the light
scattered from two four-level atoms [11]. One prediction of
this theory is that the fringe visibility cannot exceed 50%,
even with polarization-selective detection. This contradicts
the experimental results of Sec. VI shown in Fig. 6. While
the maximum visibility is about 60%, only slightly exceed-
ing 50%, no background has been subtracted from the data,
and there are several known sources of decreased visibility, in-
cluding thermal motion of the ions, the incoherent component
of the resonance fluorescence, and stray scattered light. The
data were normalized by division by a slowly varying detec-
tion sensitivity function, a process that cannot enhance the
visibility.

The basic flaw in Brewer’s argument can be seen in Eq. (2)
of Ref. [11], where he lists the basis states for the two-atom
system. The states |5〉–|8〉 are the four states in which both
atoms are in the ground electronic state. The states |1〉–|4〉
are linear combinations of states in which one atom is in the
ground state and one is in the excited state. However, most
of the possible states of this type are missing, apparently be-
cause of a false assumption that the allowed states must have
a particular kind of exchange symmetry. For example, the
intermediate superposition state shown in Fig. 4(a) is, in his
notation,

1√
2

(|c1b2〉πnn,1 + |a1d2〉πnn,2), (44)

and is not contained in the list. The neglect of these basis
states leads to the neglect of processes like that of Fig. 4(a),
in which the two atoms are initially in different mJ states.
Thus, he reaches the false conclusion that the two atoms must
initially be in the same mJ state in order for interference to
occur. Since he misses half of the processes that lead to inter-

ference, he predicts a maximum visibility, with polarization-
sensitive detection, of 50% rather than 100%.

We conclude with some remarks regarding the principle of
complementarity. Wave and particle properties of light are
complementary and hence cannot be observed at the same
time. If it is possible to determine which atom scattered
the photon, the interference fringes must vanish. Feynman’s
thought experiments, in which various methods of determin-
ing the path of an electron through a two-slit Young’s inter-
ferometer lead to the destruction of interference fringes due
to a random momentum transfer are often quoted [Ref. [2],
pp. 1-6–1-11]. However, in Ch. 3 of the same textbook, Feyn-
man emphasizes the seemingly more fundamental viewpoint
that interference is present only if there exist different indis-
tinguishable ways to go from a given initial state to the same
final state. His example of the scattering of neutrons from a
crystal is very similar to the experiment of Eichmann et al. If
the nuclei of the atoms in the crystal have a nonzero spin, the
angular distribution of scattered neutrons is the sum of a fea-
tureless background and some sharp diffraction peaks. The
sharp diffraction peaks are associated with neutrons which do
not change their spin orientations in the scattering. The fea-
tureless background is associated with neutrons whose spins
change their orientations in the scattering. In this case, there
must also be a change in the spin orientation of one of the
nuclei in the crystal. It would be possible in principle to de-
termine the nucleus which scattered the neutron, so there is
no interference. The position-momentum indeterminacy re-
lations play no essential role in the presence or absence of
interference in this case, just as in the experiment of Eich-
mann et al.
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APPENDIX: CALIBRATION OF THE
SATURATION PARAMETER

For the case where an electric-dipole transition between a
2S1/2 ground state and a 2P1/2 excited state is excited by
linearly polarized light, we define the saturation parameter
s similarly to the way in which it is defined for a two-level
system [26]. The magnetic field is assumed to be small, and
the quantization axis for the ion is along the electric field. We
define

s =
Ω2

1/2

(ω0 − ωin)2 + (γ/2)2
, (A1)

where Ω1 = 6−1/2|E0(2S1/2‖D(1)‖2P1/2)|h̄−1 is the Rabi fre-
quency, and the other terms have been defined previously.
In order for the perturbative analysis of Sec. V to be valid,
we must have s � 1. In the case of Hg+, the 2P1/2 state
has a small (approximately 10−7 ) probability of decaying
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to the metastable 2D3/2 state, which decays either directly
to the ground state or to the metastable 2D5/2 state, which
decays to the ground state. The 194.2 nm fluorescence inten-
sity from a single ion is bistable, since it has a steady level
when the ion is cycling between the 2S1/2 and 2P1/2 states
and vanishes when the ion drops to a metastable state. The
fractional population of the 2P1/2 state, summed over both
mJ values, is s/[2(1 + s)] while the ion is cycling between the
2S1/2 and 2P1/2 states. The quantum jump statistics have
been discussed in several previous articles [15,27,28]. For a
single ion, we define pon to be the fraction of the time that
the ion is cycling between the 2S1/2 and 2P1/2 states, and
poff=(1 − pon) to be the fraction of the time that it spends
in either of the metastable states. It can be shown, from
the steady-state solutions of the differential equations for the
populations [Eqs. (2a)–(2c) of Ref. [28]], that s is related to
the ratio poff/pon according to

1

2

s

(1 + s)
=
γ1γ2(poff/pon)

γ3(γ2 + f2γ1)
≈ 0.36

poff

pon
, (A2)

where the parameters γ1, γ2, γ3, and f2 have been measured
[15], and the uncertainty in the coefficient (0.36) is about 30%,
due mostly to the uncertainty in γ3.

For two ions, the fluorescence will be tristable, since 0, 1,
or 2 ions may be in a metastable state. During an interference
fringe measurement, the number of photons detected in each
successive period of a few milliseconds was recorded. Fig-
ure 7 shows a plot of the probability distribution of the 5 ms
photon counts during the measurement of Fig. 5. The three
peaks correspond, from left to right, to 2, 1, or 0 ions being in
a metastable state. The leftmost peak corresponds to the sig-
nal from stray background light, since there is no fluorescence
from the ions. The curve is a least-squares fit to a sum of three
Gaussians. The areas under the peaks should be in the ratio
p2

off :2poffpon:p2
on. The ratios of the areas obtained from the

fit are 0.011:0.160:0.828, so poff/pon=0.10 ± 0.01, and, from
Eq. (A2), s=0.078±0.025, so the perturbative analysis should
be a good approximation.

During this measurement period, the interference fringe de-
tection was gated off for 5 ms if the number of photons de-
tected in the previous 5 ms was less than 80. This helped
to prevent loss of the fringe visibility due to background
from single-ion fluorescence, which would have no interference
fringes.
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FIG. 1. Geometry of the Young’s interference experiment,
projected onto the X-Z plane. The equilibrium positions of
the two ions, represented by the filled circles, lie along the
Z axis. The wavevector kin of the incoming photon is in
the X-Z plane, making an angle Θ with the Z axis. The Y
axis is out of the plane of the figure. The projection of the
wavevector kout onto the X-Z plane makes an angle φ with
kin. The angle that kout deviates from the X-Z plane in the
+Y direction is Φ (not shown). The polarization vectors of
the incoming and outgoing photons are ε̂in and ε̂out.

FIG. 2. Zeeman sublevels involved in the 194 nm, 6s 2S1/2

to 6p 2P1/2 transition of 198Hg+. The allowed π and σ tran-
sitions are labeled. The Zeeman splitting of the levels is ex-
aggerated.

FIG. 3. Coordinate system for description of the direction
and polarization of the outgoing photon. The z axis is parallel
to ε̂in, and the x axis is parallel to kin. The polarization
vector ε̂π lies in the plane containing ε̂in and kout, while ε̂σ
is perpendicular to that plane.
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(a) (b)

FIG. 4. Each box represents the combined state of the two ions. The ordering of energy levels is the same as in Fig. 2.
In (a) (the π case), one ion or the other undergoes a π transition from the ground to the excited state. That ion undergoes
a π transition back to the ground state. The two paths lead to the same final state of the two ions. Hence, the probability
amplitudes must be added, and interference is possible. In (b) (the σ case), one ion or the other undergoes a π transition to
the excited state, but the excited ion undergoes a σ transition to the ground state. The two paths lead to different final states
of the two ions. Hence, there is no possibility of interference. In order for interference to occur, it is not necessary that the
initial states of the two ions be the same, only that the final combined states for the two paths be the same.
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FIG. 5. Experimental fringe data for the case in which the
the detected light is polarized in the same direction as the in-
coming light (π case). The ion separation d = 4.17 µm. The
angle φ (the deviation from the forward scattering direction)
increases to the right. The decrease in visibility with increas-
ing φ is due to thermal motion of the ions. The dark spots are
due to stray reflections of the laser beams. The data within
the rectangle were summed along the vertical direction and
least-squares fitted.
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FIG. 6. Experimental fringe data (dots) from the image of
Fig. 5 and a least-squares fit (line) to the sum of the theoreti-
cal intensity [Eq. (29)] and a constant background. The fitted
temperature is approximately equal to the Doppler-cooling
limit.
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FIG. 7. Plot of the probability distribution of the fluores-
cence intensity for two ions, used to determine the saturation
parameter s. The horizontal axis corresponds to the number
of photons counted in a 5 ms interval. The vertical axis cor-
responds to the number of 5 ms intervals in which a given
number of photons was counted. This was measured simulta-
neously with the interference fringes shown in Fig. 5 The curve
is a least-squares fit to a sum of three Gaussians. The areas
under the Gaussians, from left to right, are proportional to
the probabilities that 2, 1, or 0 of the ions are in a metastable
state. Higher values of s correspond to higher populations in
the metastable states.
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